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The time-domain solution of the wide-angle parabolic equation
including the effects of sediment dispersion

Michael D. Collins
Naval Ocean Research and Development Acrivity. Stennis Space Center. Mississippi 39529

((Received 8 March 1988; accepted for publication 10 August 1988)

"the wide-angle time-domain parabolic equation (TDPE), which is the inverse Fourier
transform of the wide-angle parabolic equation (PE), is derived. A numerical solution for the
model is described and a benchmark calculation is presented. The narrow-angle TDPE is also
considered and its error is analyzed and compared with the error of the narrow-angle PE. The
TDPE is compared with the progressive wave equation, which is shown to be restricted to
narrow-angle propagation for practical purposes. In the sediment, attenuation is assumed to
depend linearly on frequency and the corresponding causal dispersion law is assumed. The
modcl is used to show that the effect of sediment dispersion on pulse propagation in the ocean
can be significant. - . -- , :

PACS numbers: 43.30.Bp, 43.30.Ma, 43.20.Bi . ,

INTRODUCTION has gone into the development of the PWE, perhaps because
Time-domain approaches are useful for modeling it is more natural to march a solution of the wave equation in

broadband acoustic propagation. For example, suppose that time rather than range.

a sequence of snapshots of the acoustic pressure in two spa- In this article, the TDPE is extended to handle wide-

tial variables is desired to study the evolution of a pulse in angle propagation, and an energy argument is presented that

time. With frequency-domain approaches to this problem, it shows that the PWE is not useful for wide-angle propaga-

is necessary to: (a) Fourier decompose the source function; tion. A benchmark calculation is presented and the error of
(b) solve the propagation problem for each frequency; (c) the narrow-angle TDPE is compared with the error of the

store and manage the solution for each frequency; and (d) narrow-angle PE. Sediment attenuation is assumed to de-
perform a three-way sum over frequency and space for each pend linearly on frequency, which agrees with experimental

snapshot. Errors due to approximations and round-off occur results involving various materials and frequencies. I-12 The

in steps (a), (b), and (d). Step (a) requires the selection of a corresponding causal sediment dispersion relation," which

frequency spacing and a frequency band. Step (b) requires has been validated experimentally, 'is also assumed in the

the selection of grid spacings for each frequency. Step (c) sediment. A calculation is presented to demonstrate that
can be difficult for broadband problems. Even if step (b) sediment dispersion can have a significant effect on pulse
requires less computer time (CPU) than a time-domain cal- propagation in the ocean.

culation, it is possible that step (d) will offset the advantage.
For an analogous problem,' inverting a modal decomposi-
tion required several times as much CPU as performing the I. THE FREQUENCY-DOMAIN PARABOLIC EQUATION
calculation for each of the modes. A time-harmonic steady state is assumed and the acous-

In shallow water, it is essential for an underwater pulse tic pressure p is factored as p(x,t) = P(x)exp( - tt),

propagation model to handle bottom interaction, range-de- where t is time, x is the Cartesian position vector, and to is the
pendence, and wide-angle propagation. Since the ocean is an circular frequency. The complex pressure P is assumed to
inhomogeneous waveguide of variable depth, a realistic satisfy the pressure-release boundary condition P = 0 at the
propagation model must handle both bottom interaction ocean surface, the outgoing radiation condition at infinity,
and range dependence. Benchmark studies2 indicate that and the reduce. wave equation 4

wide-angle capability is important in underwater acoustic
modeling. The parabolic equation' (PE) method is ideally pV[ ( /p)VP I + K 2P = - 41rb(x - x,,) ()
suited to handle range dependence. With the development of where the point x,, is t he source location. The complex wave-
wide-angle capability, 4 1 the PE method became the most numberK = k + ior, Ik I isusedtoaccount forsediment loss.
useful frequency-domain tool available for bottom-interact- Absolute value is used so that energy loss occurs in the direc-
ing propagation. Two time-domain methods related to the tion of propagation. The wavenun her is k = w1/c,
PE method have been developed. The progressive wave a = (40ir log,,, e) ', /i is the attenuati )n in decibels per
equation " (PWE) advances the acoustic pressure in time. wavelength (dB/A), p is the density, and c is the sound
The PWE has been extended to handle nonlinear propaga- speed. The variable density term is due to Bergmann. ',
tion7 and bottom interaction." The time-domain parabolic To reduce to two spatial dimensions, we ass~ime that
equation" (TDPE) is the inverse Fourier transform of the azimuthal variations are negligible. Since the ocean is a
PE. It advances the acoustic pressure in range. More effort waveguide, energy propagating from a source exhibits cylin-
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drical spreading. Thus it is often beneficial to solve Eq. ( 1) in Q(r,z) = U(r,z)exp (ikr). (12)

cylindrical coordinates with z being the depth below the To simplify Eqs. (10) and (11), we assume that orfl<. For
ocean surface and r being the horizontal distance from a the wide-angle operator, we also require that
source at the depth zo. Variations in range are assumed to be k 0 ik - ko E in the water. This assumption, which is val-
sufficiently weak so that dp/dr can be ignored, which simpli- id in shallow water, leads to a TDPE that is easy to solve
fies Eq. (I) to numerically. Substituting Eq. (12) into Eqs. (10) and ( I I),

d 2 I 1p .P .3 2P I P we obtain the narrow-angle PE

dz2  p dz dz r2  -dr IOU=i(k-ko)Ua IkU iLU (13)

= - (2/r) 6(r)6(z-z). (2) dr 2k,
and the wide-angle PE

The propagation angle of a ray is defined to be the angle

it makes with the ocean surface. We define a, to be the _U = i(k - k(,) U-- oft lkol U + 2ik,, L U. (14)
maximum angle of propagation in the ocean." Rays that dr 4k ( + L

propagate with angles greater than a, are not trapped in the Since an outgoing signal is trapped in the water column, Eq.
ocean and thus do not contribute to the farfield. Since the (14) should be valid for wide-angle propagation in shallow
discontinuity in sound speed at the ocean bottom is small, water.
c = tan aM < and k -'1k - kol = O(c), where ko is an We solve Eq. (14) with the method of alternating direc-

average wavenumber in the water column. We define tions, 7 which requires numerical solutions for each of the

Q = r 2P, and Eq. (2) becomes following:

42Q I 9p rQ o  2Q  - +K 2Q=0. (3) - i(k - k,,)U, (15)
diZ p 9z dz dr2  dr

We assume that r > ro, where kor, > 1, and drop the O(r- 2) dU= - a!J I ko IU, (16)

term in Eq. (3) to obtain dr

d2q I dp dQ 4k U d3 U U
Q +(4) dr +rdi p dz drdz

dz2  p dOzd r 2

We solve Eq. (4) for d 2/dr 2 in operator notation and take = 2iku - - 2ik, ± 9 dU (17)p dzdz
the square root to obtain the outgoing operatord2 Z z

7 7k 02 Equations ( 15) and ( 16) can be solved exactly. We apply

d K 2 -k + L Galerkin's method to reduce Eq. (17) to

dr 0  1+ k~ 2 5)
0 R _U +SU =0, (18)

where dr

d 2  I dp d where R and S are tridiagonal matrices and U is the vector
L 1 - p d (6) containing the values of U at the depth grid points. This

approach is effective for handling piecewise continuous var-
We consider a plane wave traveling with the vertical angle iations in p and k. ' Details regarding the entries of the ma-
a <aM: trices are given in the Appendix and in Ref. 8. Crank-Nicol-

Q, = exp[iko(rcos a + z sin a)]. (7) son integration is used to solve Eq. (18); Eq. (13) is solved

SincedQ,,/dz = O(W" 2) andpdepends weakly on depth, we in a similar fashion.

are motivated to assume that We demonstrate the validity of Eq. (14) and the nu-
merical method with a benchmark problem" for which data

Q = Q'(zc" 2 ), (8) appear in Table I. Subscripts w and b stand for water and

p =p'(ze1/2), (9) bottom and z, is the receiver depth. The ocean depth
d = 100 m is constant. The deep source excites wide-angle

where Q' and p' are independent of e. Thus k,, 'L = O(c) modes. Transmission loss data obtained with a normal

and wemay replacethesquare root in Eq. (5) with itsTaylor modes calculation and with Eqs. (13) and (14) using a

series approximation to obtain the narrow-angle PE opera- Gaussian PE starter '
3

'" appear in Fig. 1. The results of Eq.

tor

d kk + +L10
dr ( K + L (10) TABLE . Data for the wide-angle PE benchmark problem. CPU for each

+ 2k~ PE calculation.

Replacing the square root with its Pad6 approximation, we z, 99.5 m z, - 9Q.5 m C, 1500 m/S

obtain the wide-angle PE operator c', = 1500 m/s p.= I g/cm' 13,, 0

d 2(K--k 2+L)' c= 1590m/s p,. 1.2 g/cm' P, 0.5 dB/A
=ik, I + . d(1 =100m 5(X) ,r, Ir-Im

r A ()- + AZ -0.2 m, 200 m CPU = 45 min

We define U by
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50) inverse transform of the operator - a/3 t). /c,, by veril'ing it
(" )for a single frequency. We rewrite Eq. (14) as

60- du_ IL,1 j~ 2itoc,L

dN \cc 0  4(t) + c2L
70~~(7 CO - < A(3

u (23)

and invert the Fourier transform to obtain the wide-angle

"~ 80TDPE

Sdu- I) u + u(t')- u(t)
< 90 I7 di'dr r --O c " reo t)

2

o 2c,(d/dt)L5 6 7 8 10 + U. (24)

RANGE(km) 40(3/-t) -coL
As for the nonlinear PWE of Ref. 7, each of the terms on the

50 ) right side of Eq. (24) accounts for a specific physical pro-
(b) cess; and they are referred to (from left to right) as the re-

fraction term, the attenuation term, and the wide-angle dif-

fraction/density term.
The TDPE can be initialized at r = r,, by the homoge-

70 neous half-space field"

0 ph (r,z,t) = f (t - - f t - , (25)
Z go d2 ,
< =r'+(Z+zo)2,  (26)

10 where (t) is the source function. The half-space field satis-
100-

5 6 7 8 9 10 fies the pressure release boundary condition at the ocean
RANGE(km) surface, and it accounts for the direct arrival and the surface-

reflected arrival without accounting for refraction, loss, or
FIG. 1. Wide-angle PE benchmark. Solid curve is (a) narrow-angle PE bottom reflections. This starter is accurate because refrac-
result and (b) wide-angle PE result. Daslkd curve is normal modes result, tion and attenuation are weak and can be neglected near the

source. Furthermore, rays that reflect from the ocean bot-
tom near the source propagate at large angles. Thus they are

(13) exhibit phase delay errors due to wide-angle propaga- not trapped in the oceanic waveguide and do not affect the

tion. The results of Eq. (14) agree well with the normal farfield.

modes result, which shows that Eq. (14) is a valid wide- We define q(rz,t) by q = r'2p and observe that

angle PE. All calculations were done on a Digital VAX-8650 q" =
computer. q(r,z,t) f Q(r,z,w)exp( -iot)d, (27)

II. THE TIME-DOMAIN PARABOLIC EQUATION Q(r,z,w) = f q(r,z.t)exp(iot)dt, (28)

We define u by 27
u(r,z~t) = Q(r,z,wo)exp - ot+r d.

u(r,z,t) U(r,z,w)exp( - it)da, (19) - jt( + dw.

(29)
U(rz,1) I f u(rz,0exp(iwt)di. (20) From Eq. (29). we deduce that u(r,z,t) = q(rz,t + rc,,).

2q-e Thus u has the values ofq in a reference frame that moves in
We define c,, = o/k,, rewrite Eq. (13) as time and tracks an outgoing signal. In contrast, the PWE

du ll4 involves v(r,z,t) = q( r + cot,z.t), where v has the values ofq
I - U U + U, (21) in a reference frame that moves in space.

dr c co co  2et To solve the TDPE numerically, the source function

and invert the Fourier transform to obtain the narrow-angle f(t) is assumed to have compact support. A time window
TDPE tj < t < t, that contains the signal at all times is chosen. This

du (1 I ) du c3 is possible since the outgoing signal is tracked by the time
-- CO - c ) t window. The boundary condition u = 0 is used at the pres-

sure release surface, deep within the sediment at z = z,
f " ( - uit) dt' + u. (22) (from which no energy returns to the water column due toJ (t' t)2 2 dtdi attenuation), and after the signal has passed the observer at

The integral in Eq. (22) existsastheCauchy principal value. , - t,. The boundary condificns u - du/O310 ,-re used be-
One can show that the integral operator in Eq. (22) is the fore the signal is detectcJ at f = ti.
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We solve the wide-angle T DPE with the alternating di- TABLE 11. Data for the wide-angle TDPE benchmark problem. CPU for

rections method with the splitting used to solve the wide- wide-angle TDPF calculation.

angle PE: z,,75 m z,= 25 m c,= 1500 m/S

dU I 1 ' 0 1500 m/s p =I g/cm /3'" 0

-- - t c. 1600 m/s p,, = 1.5 g/cm, /h = 0.5 dB/A

du af - uW ) d=d(r) v= 150 s' r"=50m

u u dt', (31) Ar=Sm Az=2m At=2/3 ms

-r -,c 0 - (t, _t)
2  t=10Ofrs z, =300m CPU=3.75h

4 d3u a3u 1 ap d 2 u

c6 ar at2 
2 ar dz p az dr dz

2 d3 u 2 dp d2u (32) f(t) =exp[ -(vt)
2], (38)

Co d dt CP dZ (Z dt where v 150 s-'. The ocean depth is 200 m for r < 4 km,

The Lax-Wendroff method " ' is used to solve Eq. (30), linearly sloping from 200 to 50 m over 4 km <r <8 km, and
which is a first-order hyperbolic equation. 50 m for r> 8 km. To prevent reflections, a layer of sediment

Since Eq. (16) can be solved exactly, we define the range 10OAz thick is added below z = z., in which I increases
increment Ar and y ufi Arc 0 and solve Eq. (31 ) as fol- linearly to 10 dB/A. We have found this approach effective
lows: and use it in all calculations. The results of Eq. (24) appear

in Fig. 2. To obtain a sequence of snapshots of the acoustic
U(r + Ar.z,co) = U(r,z,..)exp( - yioi (33) pressure, we convert the horizontal axis from time to range

u(r + Ar,z,t) using the approximation

= U(r,z,(,)exp( -V ,ao )exp( - iot)doo. (34) pr + brz,t) p(r,z,t - brco), (39)

which is valid for small propagation angles and small )r.
With this conversion, it is easier to describe the snapshots.

Substituting Eq. (20) into Eq. (34) and interchanging the The solid contours correspond top > 0; the dashed contours
order of integration, we obtain correspond to p < 0.

= fu(rzt') In the water column, the field consists of a sequence of
ur Y + (t' - t)- fronts involving multiple reflections from the ocean surface

The kernel of the integral operator of Eq. (35) is large near and bottom. Since the reflection coefficient at the ocean sur-
t saface is - land the reflection coefficient at the ocean bottomt' =t bcaue i coveres o.5(' -t) s A-O.Thi sigu- is approximately - I for small-angle incidence, the multi-

lar behavior makes the operator local and thus numerically is roximtel i al-ae incidn the
efficient. Since the kernel goes to zero rapidly away from ply reflected arrivals alternale between solid and dashed
t' = t, the integration limits can be collapsed to a small inter- contours. Energy flows to the left due to geomettic disper-
val containing t' = t. We approximate the integral over ion. As rime increases, the fronts are squeezed together.
(t,,, - At/2, t,, + At/2) by replacing u(rz,t) with Large amounts of energy penetrate into the ocean bottom inu(r,z, t,,) and integrating the kernel exactly to obtain the upslope region.

The error of the narrow-angle TDPE is analogous to the

u[(r + Ar(,z,, I tan , - t,+ At error of the narrow-angle PE as both involve delays. Distinct

r features in the narrow-angle transmission loss curve in Fig. 1

t_ - At1 appear at larger ranges than they should. For example, the
-tan-' u(rz,t,,), large null that occurs before r = 7 km appears well beyond

(36) r = 7 km. It is evident from the waveforms appearing in Fig.
3 that energy is dispersed too fast and squeezing is delayed

where the time grid points are t. = n At and At is the time for the narrow-angle TDPE. The errors are small for the first
increment. arrivals. However, the agreement gets progressively worse

Galerkin's method is used to reduce Eq. (32) to for the later arrivals since the propagation angle increases
with arrival time. The agreement improves as wide-angle

u + C = 0, (37 energy is cut off with decreasing depth.a---r + ar O 2 atTo obtain a TDPE benchmark, we approximate a time-

where A, B, and Care tridiagonal matrices and u is the vector haron ource b

containing the values of u at the depth grid points. Details

regarding the entries of these matrices are discussed in the sin (tot) af (t - t (40)
Appendix. Crank-Nicolson integration is used to advance
Eq. (37) in range using centered differences in t. Since the where (t = 100r s '. By superposition, the time-harmonic
energy flow due to geometric dispersion is from t, to t, it is response p_ is approximated by
necessary to sweep from t, to t,

We demonstrate the validity ofEqs. (22) and (24) with p,, (r,z,t) y a"p(r,z,t - t "), (41)
a benchmark.' We use the data from Table II with the Gaus-
sian source function wherep is the response to f Details regarding the constants
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7/ FIG. 2. Snapshots of the pressure field obtained with wide-angle TDPE
near (a) r = 2 km. (b) r = 4 km, (c) r = 6 km, (d) r = 8 km, and (e)
r 10 km. Horizontal line is the ocean bottom (gradual slope is not

200- shown).

300
5750 5850 5950 6050

RANGEWm

a" and I" and the approximation of a function by Gaussians In the derivation )f the TDPE. we defined a new dependent
are given in Ref. 8. Transmission loss data obtained with Eq. variable. In the following analysis, it is convenient to define
( 14) as well as Eqs. (22) and (24) using Eq. (41) appear in new independent variables. We introduce 1; =- (I -r)2

Fig. 4. Phase errors are evident for the narrow-angle TDPE q =r cos di + i sin Ai and 4 = z, which transform Eq. (42)
calculation. As for the waveforms in Fig. 3, the errors de- into
crease as wide-angle propagation is cut off. The agreement is
good for the wide-angle TIJPE calculation. (Co (h sl h d q

Ill. COMPARISON OF THE TDPE AND THE PWE 2($ ~
The TDPE and the PWE are special cases of a one- (co (b in b '. (43)

parameter family of methods for solving the wave equation. 31

For c = p = I and f3 = 0, the inverse Fourier transform of We rcqUir-C that q vanish at z-M, ,,ad ~ and
Eq. ~ thalt dq/ld: attishalt2.- At % k e 1'losc thle initial

d-q -. ___ d (42 ci mlitlion q -q. Ihe geomlet r, is ill st rated in I-ie. 5.
/iZ (fr diSince the outgintg field is tracked. and it propagates

2118 IACOUPt Soc Am . Vol 84 N,, c., Deei be 19,4 '9.~.



(a) (d)

0 50 100 150 200 0 50 100 150 200

RELATIV E TIE(ms) RELATIVEF TIME(ms)

(b) (e)

0 50 100 150 200 0 50 100 150 200

RELATIVE TIME(ms) RELATIV E TIME(ms)

(c)

IFIG, 3. Waveform detected bNy received at: z 25 mi and (a) r 2 km. (b)

Ir -4 kmn, c) r - 6kmn. (d)ir -8 km. and (e) r 10 km. Solid curve is
wide-angle TLI'E result. Dashed Curve is narrow-angle TDPE result

0 50 100 150 200

RELATIVE TIME(MS)

with small vertical angles, the dominant operator in Eq. a 3q (cs+.i ab dq
(43) isd/d .Thus weassume that d/dy <31/ d& dand aa- cs~+sn~
drop the third term to obtain 5'2d7

32 q _a 2q =_.+____4 2)dq 0
- (-- s(cos+±sin 0) 0.(44) sincos di72)(45)

The narrow-angle TDPE corresponds to (A' 0 in Eq. (44).
The narrow-angle PWE corresponds to 46 =ir!

2. Thus the a9 'q 33 qcgi 4 i ' .(6
narrow-angle TDPE and the narrow-angle PWE have the dy d' 2 (o b-snA (0

same canonical form.
Differentiating Eq. (43) with respect to and Eq. (44) We solve forad 5q/d$ a?,2 in Eq. (46) and substitute the result

with respcct to y~, we obtain into Eq. (45) to obtain
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40 3 q 3 q a 3q(a) +--O. (48)

50 We investigate the stability of Eq. (48) with the energy3 method,2' Due to the boundary conditions at _ 0 i,, Eq.
(48) is equivalent to

q 2q d , d+f d "d . (49)

70 I We multiply Eq. (49) by q and integrate over _. using inte-
V :gration by parts to obtain

0- 4 6 6 10 )2 d: 1 (0' ) q2 d

RANGE(km) 2 (50,
= -2J.Z d -'. (50)

40
(b) We define the energy E by

r 0 f f -- )/ d_"d4 +q'i d. (51)

. , Since dE/Or/< 0 hy Eq (50), we deduce that the wide-angle
60, / TDPE is well-posed. A similar argument holds for d < ir/4.

K I , 7" Thus Eq. (47) is well-posed for h < r/4.
;t Eq. iThe wide-angle PWE is obtained by taking b = ir/2 in

80 aga~q a q £Pq =0, (52)Dod , 2 Og 2 37' O/ 377 03
0 2 4 6 8 t0o/i 2

RANGE(km) - j rj f-i. )2d" d ' q d

FIG. 4. Wide-angle TDPE benchmark. Solid curve is (a) narrow-angle ( ,q )2
TDPE result and (b) wide-angle TDPE result. Dashed curve is wide-angle 2 d d'd'. (53)
PE result. _J _

We define the energy E = F, where

F( ,7/) = f [ f q - E d d q]- ds. (54)

a q (cos + sin 6) a3q ,,f ( ) "d (

3-7 If F>0 initially, 3E/A77>0 by Eq. (53). Thus the wide-

+ (cos dS - sin 4) (3q 0. (47) angle PWE is ill-posed as is Eq. (47) for h > ,r-4.

As7 "- To understand why the wide-angle PWE is ill-posed, we

As the sign of the third term changes at (b = Tr/4, the canoni- replace the initial data at _' = , with the boundary data

cal form of Eq. (47) changes. q = 0 at " = 4o and 4,. We multiply Eq. (52) by q and inte-

The wide-angle TDPE is obtained by taking q, 0 in grate over both f and 4 using integration by parts to obtain

Eq. (47) df jQ q2 + (A-)I d4 d4 = 0. (55)

Thus the wide-angle PWE is conservative and well-posed as
r 4 t0 a two-point boundary value problem for 0 > ir/4. With these

boundary conditions, the PWE counterpart of Eq. (32) can-
S 0 -not be solved by sweeping in t making it impractical for nu-

merical calculations.
We now illustrate a problem associated with the fact

that the PWE is an initial value problem in time as opposed
'1 to range. The maximum range at which Ph may be applied

decreases as the source gets closer to the bottom. " Thus ph
q = a O0 cannot be used to initialize the field over a wide-range win-

r10 dow for a deep source. We modify the problem described in
Table I by moving the source down to z = 180 m and using

t the half-space field

FIG. 5. Geometry ofcoordinate systems. Signal propagates within thediag- P, (r,z) =( 1/d )exp(ikod ) - (1id, )exp(ik(,d,
onal scrip. (56)
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as an initial condition at r = r. Transmission loss obtained where w,, is a very low reference frequency and c. (w,,) c.
with Eq. (14) appears in Fig. 6 for r,, = 50 and 250 m and for Wuenschel showed that the agreement between predicion
a Gaussian PE starter. The error for the case r,, = 250 m and observation is excellent if both Re(b) and Im(b) are
shows that 9,, is not valid to 250 m. Based on the waveforms imposed and that the agreement is poor if only lm(b) is
in Fig. 2, which are approximately 250 m in width, a window imposed.'' The effect of sediment dispersion on nearfield
of this width is reasonable. Thus it would be difficult to con- acoustic propagation in the ocean has been studied experi-
struct an initial field for the PWE for this problem. Since the mentally,22 and distortions attributed to sediment dispersion
agreement is good for r,, = 50 m, the TDPE can handle this were observed in signals received in the sediment. In this
problem using ph as an initial condition at r, = 50 m. article, we are interested in the farfield effects of sediment

dispersion on signals received in the water column.
IV. DISPERSIVE SEDIMENTS Adding the dispersive term from Eq. (57) to Eq. (23),

Dispersion and attenuation are introduced into the we obtain

TDPE as a perturbation with the definition K = k + b, O I .(1 I U o f0 io U_ 2iofli(
where b ( k is a complex function of t. To obtain a TDPE dr CO rrco
with attenuation and dispersion, the expression K = k + b is U 2icoL
substituted into Eq. (23) and the Fourier transform is in- X log o U+ U. (58)
verted. This approach allows an arbitrary complex disper- (00 402 + c(, L

sion relation. Inverting the Fourier transform in Eq. (58), we obtain the
Experimental studies involving various materials and wide-angle TDPE with dispersion:

frequencies have determined that Im (b) depends linearly on au (1 l) au 2c(,(d at)L
(o (Refs. 10-12). In a theoretical study, ' Futterman showed - = -) - + Mu + 2) _ Lu,
that Re(b) is determined unambiguously from Im(b) by the c t 4(d dt(59)
principle of causality and that the following relation between
phase velocity c. and frequency holds: Mu -- 0c) U W) 2io log

I _ I o'f '~,21rc J (00,
2a log (57() 

+.... o- --- log (57) Xexp[io(t t0]dt da, (60)

where M is the attenuation/dispersion operator. I he equa-
40- tion

(a)--u Mu (61)

1 0 -dr
is solved iuneiicaliy with an approach siiilar to the ap-

z proach used to solve Eq. (31). For a single frequency. Eq.
2 60- (61) has the exact solution

- U(r + Ar,zw)

Z- - U(r,z,(o)exp -yloi - log ). (62)

where y = aflAr/c. The solution of Eq. (61) is obtained by

0 2 4 6 8 10 inverting the Fourier transform in Eq. (62) and substituting

RANGE(kn) Eq. (20) for U to obtain

40 u(r+Arz't)=- f f u(rzt')exp( - y)
(b) IT

-cos[&w(t' -t) - - log - d t ' da.
S50 (0 __

(03)

60IThe integral i', Eq. (35) is approximated by dividing the
z1~ V '\ time integral into a sum of integrals over small intervals over
Z: which u is assumed constant. This approach does not give a

70 robust numerical solution of Eq. (63). Since Eq. (63) ac-
Z 70 counts for both dispersion and attenuation, it must translate

and dampen a waveform. Assuming u constant over each

80 suhinterval of time amounts to assuming that u is a step
0 2 4 6 6 !n f in time. Thus one might j,cct this approach to be

RANGE(ktn) inetfectie because the values at tile grid points do not

0( 1 idc-d:'gic Ii r f'r dccp uurcc. 5 Iid cur ohwd v 1 . change Os a| sLt'p I'ull lion propagates a siall distance. A
M r,.( h r, SlIp,. I) ttrxc,'hlahbcd h (i),,I robust solti t ion is, obtained h% approximating u hy a parabola
I' .t l'c.r ove r each suhintei sal

,Sw .r V ;(: , vo B
0
] e ( .

,
-



For t,,, - At /2 < t' < t,,, + At /2, we approximate 1590-

u(r,zt') with

u(r,z,t,, , ) - u(r,z,t,,, ,)
u(r,zAt')tu(r,z,t,, + 1570-

u(r,z,t, ) 2u(r,z,t) + u(r,z,t,,, 0
_ _ _-__1550+W 2(At) 2  >

X. (t ° - t, )2-. (64)

Substituting Eq. (64) in Eq. (63). we obtain the approxi- 1530
mate solution 0 100 200 300

u(r + Ar,z,;) FREQUENCY(Hz)

I FIG. 7. Solid curse is phase %elocit.,. Dashed curse is group sclociti The
SF( t ,, )u( r.zt,,, ) difference between the curses is nearly constant.

u~rz~t... i) - u(r.zt,,, )
+ G(t,,, -t,)

2At u(r o + Ar,zjt)

+ H(t,,,-1t.) = exp( -' o,)sin ,-)- olog
u(r.z.t . ) -2u(rz.t,_ ) + u(rz.t,,, ) 77 (osI (65)

2(ArY' + 3 exp( - Vi',, )sin (wt - --4 . log ) . (71)
here \ 7" (i

t 2 " 11 We let c -1520 m/s. c,, =1500 m/s. 13 0.5 dB/,,
) -M exp( - 1'O)sin o At )9,1 -- 27- s '. Ar = 2 m, and At = 1/3 ms. The phase and

7 J!1) 2 group velocities appear in Fig. 7. It is easy to show from Eq.

& 2 l o , (66) (57) that the difference between the phase and group veloc-
, t(lo , j ities is nearly constant over a wide frequency band. The con-

I I I stants A, appear in Table III forIm. < 20. In contrast to thc
GMxp( - 12Oo AC At constants for the attenuation operator. A,,, is negligible for

0 > I due to the causality of the atten uation/dispersion op-
2 sin ( (0 At sin wt - wlog to ) dto. erator. We takem, = - 20 and m. = I. The results of Eq.
(d 2 (69) appear in Fig. 8 after 100 and 200 range steps. The

(67) solution in the absence of dispersion is included for empha-

I I F(At)2  IH(t) =- - exp( - (O) - sin - (0 At) TABLE Ill. Coefficients for the numerical solution of the attenuation/dis-
Jo (9 2 (2 persion operator. The small numbers in the right column are not used in the

2At (Cos 1 ) calculations.

m (2 M m ,4A

4 , sin ( t)Jcos tot A 09 og2-)d to . - 20 5.5357370E-05 2 2.0431539E-09
W_ \2 /. At i i - 19 6.3(51957E-05 3 3.0856633E-09

(68) - 18 7.1207804E-05 4 4.1212398E-09
- 17 7.9770936E-05 5 5.1469717E-09

By manipulating the indices, Eq. (65) becomes 16 8.9975285E-O; 6 6.1596332E-09
- 15 1.0226850E-04 7 7.1556476E-09

u(r+ Ar,z,t,) = y A,,u(rz,t.+,), (69) - 14 1.1726187E-04 8 8.1310549E-09
,, - 13 1.3580774E-04 9 9.0814698E-09

- 12 1.5912310E-04 10 1.0002032E-08where the coefficients A, are easily solved for in terms of F, - 11 .8899402E-04 II 1.0887371E-08
G, and H. Since the operator converges to6(t' - 1) as Ar-O0, - 10 2.2812726E-04 12 1.1731533E-08
the sum can be collapsed to a small number of grid points -9 2.8078392E-04 13 1.2527930E-08
near t, making the operator efficient. The integrals for F, G, - 8 3.5398538E-04 14 1.3269264E-08- 7 4.5996779E-04 15 1.3947457E-08

and H must be evaluated numerically, but this is a relatively -6 6.2160386E-04 16 1.4553552E-09
minor task. - 5 8.g567595E-04 17 1.5077628E-08

To demonstrate the robustness of Eq. (69), we allow it - 4 1.3598768E-03 sI 15508673E-08
- 3 2.3321055E-03 19 1.583447,F-8to act on a plane wave with the initial condition - 2 4.5252889E-03 20 1.5370508E-08

u(r,,z,t) = sin(ct) + 3 sin(ot), (70) - I - 3.990910')E-02
0 0.9272352

where to = 100nr s 'and (9, = 340ir s - '. The exact solution I 9.9426970E-02

is given by
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(a) TABLE IV. Dat a for itic dispersion probhlemt. CPL' for T DPEc cI, ulation

z, 28m in, =28m in("2 1W,

C,= 1500m/S p., l Ig/cm' 13. -
= C ((,).Z) P = 1.5 g/cm fl, . (15 dB/ ?

,Id= 30 m v= 300Xs r, 20nm

,~\/ .. Ar = 2m Az= ImAi /3m

(a,,! =i d
2

75 z" = loom CPU =3.9 h

sis. We observe that the shape of the dispersed wave is dis-
torted. The agreement between the exact and numerical so-

0 2 0 40 6 lutions is good.
RELATIV'E TIME(rus) To demonstrate the effect of sediment dispersion on

(b) pulses, we consider the problem described in Table IV. The
(b) base sound speed is c(z) = ( 1520 + 5z) rn/s for z - d < 10

m, c(z) =15 70 m/sforz- d >10 mwiI(to, = 2 77s h.IIi s
evident from Fig. 7 that the phase velocity cp. ;s about 40 in/s
greater thant c in a wide frequency band centered about 100

,,, ~ -~- -Hz. For comparison, we consider the case with the frequen-
cy-independent sediment sound speed c(z) + 40 rn/s, a
sound-speed profile that was assumed in an experimental
study. 2 The source is Gaussian with %,v 300 s '. Contour
plots for the solution of Eqs. (24) and (59) appear in Fig. 9.
We see from the waveforms in Fig. 10, which is qualitatively

similar to Fig. 3 of Wuenschel's paper, that the signal is sig-
0 20 40 60 nificantly affected by the dispersion.

RELATIV*E TIME(nis) It was noted in Ref. 23 that thle linear loss law without
FIG. 8. Benchmark of attenuation/dispersioi nuimerical solution. Solid disperison does not provide good predictions for anl environ-
curte is the tumerical solution Dashed curse is the exact so'lutioin Dotted mn iia oteoew aejs osdrd n h
curse is the exact solution without dispersion terto Rct b). afte r (a) tI etsmlr oteoew0hv0utcnidrd n h
range step.- antd (h) 2LX) range stps linear loss law was challenged. The results in Ref. 23 arc

(a) 0 .. (c)

25-5

50

1890 1935 1980 2025 2.071 11190i I9 1.- t98) 22 20710

RANGE(rni)KMl~
(b) 0 (d) i

50

- -

too 100)

3890 315 3981) 402r5 40)70 38t90i 3915 391) 4 1 4071)

RANGE (rn) RANGE(in)
F I.f( 9. Snapshttiis iif Ithe pressure field oht tied 'A I th %4 idit fiig le 1I) ' %L 1 h~ tit iipv rsioii ica i)r 2 1 kin a d t hi 4 km ~and fil %% ide-atiglc I DPF

without diqpersion near ( c) r 2m imnil () r 4 km
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APPENDIX: DEPTH DISCRETIZATION WITH
GALERKIN'S METHOD

Galerkin's method with linear test functions is applied
to discretize depth dependence. We use the approach used in

0 30 60 90 120 Ref. 8 with some improvements. The depth grid points are
RELATIVE TIME(ms) defined to be zi = i Az, where Az is the depth increment. The

basis functions 1,', (z) vanish for 1z - z, j > Az, increase lin-
(b) early from 0 to I over z, < <z <z,, and decrease from I to 0

over zi <z < z, s i. The basis functions can be used to ap-
proximate a function by a piecewise linear function with ex-
act agreement at the grid points. To solve the wide-angle PE,
we define U, (r) = U(r,z,), 0- log(p), and®, = 0(z, ) to
obtain

U(r,z) -I ,(r)'I'j(z), (AI)
i

E)(z) o f,®i (z). '(A2)

0 30 60 90 120 Galerkin's method is used to discretize depth dependence in
RELATIVE TIME(ms) Eq. (17) by reqtiring thit the following hold for all i:

FIG. I0. Waveformdetectedbyreceiveratz= 28mand (a) r= 2km and T (z)(4k2 '9U + a3
U

(b) r = 4 km. Solid curve is from wide-angle TDPE with dispersion. Jt. dr 3z ": -

Dashed curve is from wide-angle TDPE without dispersion. 1 ap 2z

I pzrz .32 9U 1pz9U
-- - 2 'U+.-42ik, lpcUdz=O.

p dz a~r iz 2 (A3) a8z
(A3)

based on an analysis that neglects sediment dispersion. Equation (18) is obtained by sbstituting Eqs. (Al) and
Based on the results of Wuenschel and the fact that sediment (A2) into Eq. (A3). The entries of the matrices R and S are
dispersion affects water-borne signals significantly as we determined by the following approximations obtained with

have demonstrated, it appears that dispersion might be a Galerkin's method:

better explanation of the observations than a new loss law.

d2 U U,. , -2U, -U, I

dz' (A4)

V. CONCLUSIONS U . + 4,~(A5)
Being the inverse Fourier transform ofthe PE, the wide- 6

angle TDPE is analytically equivalent to the wide-angle PE. 3d O L

Like the wide-angle PE, the wide-angle TDPE is accurate dz (9z :

and efficient and easily handles range-dependent propaga- (20, -0, -0,
tion. Since the TDPE is an initial value problem in range, it is - 2 (Az)
easy to construct an accurate initial field for the TDPE. The (0, 0,) U, 4 0, 0, U,
TDPE handles sediment dispersion, which can have a signif- +
icant effect on water-borne signals. The TDPE can be initia- 2 (Az)-A
lized with the homogenous half-space field, which is accu- (A6)
rate and easy to construct. The numerical solution of the The entries of the matrices .4, B, and Care also derived from
wide-angle TDPE involves the method of alternating direc- the above difference formulas.
lions as well as several other .,tandard numerical methods. 'M. D. Collins. "Henchmark calcuilations tor Higher-()rder Parabolic

The refraction operator is solved with the Lax-Wendroff Equatons,, J. Acoust, So. Am. (submitiedl.
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F. D. -1appert, "The Paraholic Approximation Method. in Ware Propa-
and Crank-Nicolson integration. The attenuation/disper- gatOi and 'riicr..hot, edited h J. I3 Keller and J. S. Papada-

sion operator is solved with quadrature to evaluate intcgrals. ki., lecture Note% in l'hyiue, Vol. 70 (Springer, Nes York. 1q77)
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